Dynamical Systems and Space Mission Design

Jerrold Marsden, Wang Koon and Martin Lo

Wang Sang Koon Control and Dynamical Systems, Caltech

koon@cds.caltech.edu

The Flow near L_1 and L_2 : Outline

- ► Outline of Lecture 2B:
 - Equilibrium Regions near L_1 and L_2
 - Four Types of Orbits.
 - Invariant Manifold as Separatrix.
 - Flow Mappings in Equilibrium Region.

Jupiter Comets

Rapid transition from outside to inside Jupiter's orbit.
 Captured temporarily by Jupiter during transition.

 $\blacktriangleright Exterior (2:3 resonance). Interior (3:2 resonance).$

The Flow near L_1 and L_2 : **Overview**

- ▶ Lo and Ross used PCR3BP as model and noticed that the comets follow closely the invariant manifolds of L_1 and L_2 .
- ▶ Near L_1 and L_2 are where Jupiter comets make **resonance transition**.

The Flow near L_1 and L_2 : **Overview**

▶ For energy value just above that of L_2 ,

- Hill's region contains a "neck" about L_1 and L_2 .
- Comets are **energetically permitted** to make transition through these equilibrium regions.

 [Conley] The flow has 4 types of orbits: periodic, asymptotic, transit and non-transit orbits.

The Flow near L_1 and L_2 : Linearization

[Moser] All the qualitative results of the linearized equations carry over to the full nonlinear equations.

▶ Recall equations of PCR3BP:

$$\dot{x} = v_x, \qquad \dot{v}_x = 2v_y + \Omega_x, \dot{y} = v_y, \qquad \dot{v}_y = -2v_x + \Omega_y.$$
(1)

► After linearization,

$$\dot{x} = v_x, \qquad \dot{v}_x = 2v_y + ax, \dot{y} = v_y, \qquad \dot{v}_y = -2v_x - by.$$

$$(2)$$

► Eigenvalues have the form $\pm \lambda$ and $\pm i\nu$.

► Corresponding eigenvectors are

$$u_1 = (1, -\sigma, \lambda, -\lambda\sigma),$$

$$u_2 = (1, \sigma, -\lambda, -\lambda\sigma),$$

$$w_1 = (1, -i\tau, i\nu, \nu\tau),$$

$$w_2 = (1, i\tau, -i\nu, \nu\tau).$$

The Flow near L_1 and L_2 : Linearization

► After **linearization** & making **eigenvectors** as new coordinate axes, equations assume simple form

$$\dot{\xi} = \lambda \xi, \quad \dot{\eta} = -\lambda \eta, \quad \dot{\zeta}_1 = \nu \zeta_2, \quad \dot{\zeta}_2 = -\nu \zeta_1,$$

with **energy function** $E_l = \lambda \eta \xi + \frac{\nu}{2}(\zeta_1^2 + \zeta_2^2).$

▶ The flow near L_1, L_2 have the form of saddle×center.

Flow near L_1 and L_2 : Equilibrium Region $\mathcal{R} \simeq S^2 \times I$

- ► Recall that **energy function** $E_l = \lambda \eta \xi + \frac{\nu}{2}(\zeta_1^2 + \zeta_2^2).$
- **Equilibrium region** \mathcal{R} on **3D energy manifold** is homeomorphic to $S^2 \times I$.

► Because for each fixed value of $\eta - \xi$, $E_l = \mathcal{E}$ is a **2-sphere**

$$\frac{\lambda}{4}(\eta+\xi)^2 + \frac{\nu}{2}(\zeta_1^2+\zeta_2^2) = \mathcal{E} + \frac{\lambda}{4}(\eta-\xi)^2.$$

Flow near L_1 and L_2 : Equilibrium Region $\mathcal{R} \simeq S^2 \times I$

► Recall that **energy function** $E_l = \lambda \eta \xi + \frac{\nu}{2}(\zeta_1^2 + \zeta_2^2).$

- Each **point** in (η, ξ) -plane corr. to a **circle** S^1 in \mathcal{R} with radius $|\zeta| = \sqrt{\frac{2}{\nu}}(\mathcal{E} \lambda \eta \xi)$,
- with **point** on the **bounding hyperbola** corr. to **point-circle**.
- ► Thus, line segment $(\eta \xi = \pm c)$ corr. to S^2 in \mathcal{R} because each corr. to $S^1 \times I$ with **2 ends** pinched to a **point**.

Flow near L_1 and L_2 : 4 Types of Orbits

► The flow $(\eta(t), \xi(t), \zeta_1(t), \zeta_2(t))$ is given by $\eta(t) = \eta^0 e^{-\lambda t}, \quad \xi(t) = \xi^0 e^{\lambda t},$ $\zeta(t) = \zeta_1(t) + i\zeta_2(t) = \zeta^0 e^{-i\nu t},$

with 2 additional **integrals** $\eta \xi (= \eta^0 \xi^0), |\zeta|^2 = \zeta_1^2 + \zeta_2^2 (= |\zeta^0|^2).$

▶ 9 classes of orbits grouped into 4 types:

- **black** point $\eta = \xi = 0$ corr. to a **periodic** orbit.
- 4 half **green** segments of axis $\eta \xi = 0$ corr. to 4 cylinders of orbits **asymptotic** to this periodic orbit.

Flow near L_1 and L_2 : 4 Types of Orbits

▶ 9 classes of orbits grouped into 4 types: Shown are

- 2 red hyperbolic segments $\eta \xi = \text{constant} > 0 \text{ corr. to}$ 2 cylinders of **transit orbits** which transit from 1 bounding sphere to the other.
- 2 **blue** hyperbolic segments $\eta \xi = \text{constant} < 0 \text{ corr. to}$ 2 cylinders of **non-transit orbits** each of which runs from 1 hemisphere to the other on same bounding sphere.

McGehee Representation: Equilbrium Region \mathcal{R}

▶ [McGehee] To visualize region $\mathcal{R} \simeq S^2 \times I$.

(a)

McGehee Representation: Equilbrium Region \mathcal{R}

- ▶ 4 types of orbits in equilibrium region \mathcal{R} :
 - **Black** circle l is the unstable **periodic** orbit.
 - 4 cylinders of **asymptotic** orbits form pieces of **stable** and **unstable manifolds**. They intersect the bounding spheres at **asymptotic circles**.

$\blacksquare McGehee Representation: Equilibrium Region \mathcal{R}$

- ► Asymptotic circles divide bounding sphere into spherical caps and spherical zones.
- ▶ 4 types of orbits in equilibrium region \mathcal{R} :
 - **Transit** orbits entering \mathcal{R} through a **cap** on a bounding sphere will leave through a **cap** on another bounding sphere.
 - **Non-transit** orbits entering \mathcal{R} through a spherical **zone** will leave through another **zone** of the same bounding sphere.

McGehee Representation: Separatrix

- ► Invariant manifold tubes act as separatrices for the flow in *R*:
 - Those inside the tubes are **transit** orbits.
 - Those outside of the tubes are **non-transit** orbits.

McGehee Representation: Separatrix

- ► Stable and unstable manifold tubes act as separatrices for the flow in *R*:
 - Those inside the tubes are **transit** orbits.
 - Those outside of the tubes are **non-transit** orbits.

Applications: Jupiter Comets

- By linking invariant manifold tubes, we found dynamical channels for a fast transport mechanism between exterior and interior Hill's regions.
- Jupiter comets can follow these channels in rapid transition between exterior and interior region passing through Jupiter region.

Applications: Shoot the Moon

- Stable manifold tube provide a temporary capture mechanism by the second primary.
- **Stable manifold tube** of a periodic orbit around L_2 guides spacecraft towards a **ballistic capture** by the Moon.
- By saving fuel for this lunar ballistic capture leg, the design uses less fuel than a Earth-to-Moon Hohmann transfer.

I Flow Mappings in \mathcal{R} : 4 Flow Mappings

- ► The flow in \mathcal{R} defines 4 mappings:
 - 2 between pairs of spherical **caps** of different bounding spheres.
 - 2 between pairs of spherical **zones** of same bounding sphere.
- ► They are Poincaré maps in \mathcal{R} and they will be used later to build the global **Poincaré map**.

Flow Mappings in \mathcal{R} : Infinite Twisting of the Map

► To visualize the infinite twisiting of the maps.

Flow Mappings in \mathcal{R} : Infinite Twisting of the Map

From
$$\zeta(t) = \zeta^0 e^{-i\nu t}$$
, we obtain $\frac{d}{dt}(\arg \zeta) = -\nu$.

- Amount of twisting a point will undergo is proportional to the time required for its corr. trajectory to go from domain to range.
- ► This **time** approaches **infinity** as the flow approaches an **asymtotic circle**.
- ► Hence, amount of **twisiting** a point will undergo depends very sensitively on its **distance** from an **aymptotic circle**.

Flow Mappings in \mathcal{R} : Infinite Twisting of the Map

• Images $\psi_2(\gamma_2)$ of abutting arc γ_4 spirals infinitely many times around and towards asymptotic circles a_1^- .

Applications: Shoot the Moon

- ▶ Find position and velocity for a spacecraft such that
 - when integrating **forward**, SC will be guided by **Earth-Moon manifold** and get ballistically captured at the Moon;
 - when integrating backward, SC will hug
 Sun-Earth manifolds and return to the Earth.
- Infinite twisting of flow map is key in finding a low energy transfer in Sun-Earth leg of the design.

Ballistic Capture of a Spacecraft by the Moon from 200 km Altitude Earth Parking Orbit (Shown in an Inertial Frame)

Appearance of Orbits in Position Space

Tilted projection of \mathcal{R} on (x, y)-plane.

Appearance of Orbits in Position Space

- ▶ 4 types of orbits: Shown are
 - A **periodic** orbit.
 - A typical **aymptotic** orbit.
 - 2 **transit** orbits.
 - 2 **non-transit** orbits.

